Voice Activity Detection Based on Auto-Correlation Function Using Wavelet Transform and Teager Energy Operator
نویسندگان
چکیده
In this paper, a new robust wavelet-based voice activity detection (VAD) algorithm derived from the discrete wavelet transform (DWT) and Teager energy operation (TEO) processing is presented. We decompose the speech signal into four subbands by using the DWT. By means of the multi-resolution analysis property of the DWT, the voiced, unvoiced, and transient components of speech can be distinctly discriminated. In order to develop a robust feature parameter called the speech activity envelope (SAE), the TEO is then applied to the DWT coefficients of each subband. The periodicity of speech signal is further exploited by using the subband signal auto-correlation function (SSACF) for. Experimental results show that the proposed SAE feature parameter can extract the speech activity under poor SNR conditions and that it is also insensitive to variable-level of noise.
منابع مشابه
Robust Voice Activity Detection Based on Discrete Wavelet Transform
This paper mainly addresses the problem of determining voice activity in presence of noise, especially in a dynamically varying background noise. The proposed voice activity detection algorithm is based on structure of three-layer wavelet decomposition. Appling auto-correlation function into each subband exploits the fact that intensity of periodicity is more significant in sub-band domain than...
متن کاملRobust voice activity detection using perceptual wavelet-packet transform and Teager energy operator
In this letter, a robust voice activity detection (VAD) algorithm is presented. This proposed VAD algorithm makes use of the perceptual wavelet-packet transform and the Teager energy operator to compute a robust parameter called voice activity shape for VAD. The main advantage of this algorithm is that the preset threshold values or a priori knowledge of the SNR usually needed in conventional V...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملRobustness of Auditory Teager Energy Cepstrum Coefficients for Classification of Pathological and Normal Voices in Noisy Environments
This paper focuses on a robust feature extraction algorithm for automatic classification of pathological and normal voices in noisy environments. The proposed algorithm is based on human auditory processing and the nonlinear Teager-Kaiser energy operator. The robust features which labeled Teager Energy Cepstrum Coefficients (TECCs) are computed in three steps. Firstly, each speech signal frame ...
متن کامل